目前,高校数据分析中,利用校园"一卡通"数据进行决策支持分析的成果最多。如樊搏(2015)、费小丹(2015)等从一卡通消费记录判断学生是否为贫困生;陈锋(2014)利用校园一卡通用户就餐消费行为数据,分析学生消费行为和食堂运营状况;薛黎明等(2014)也从时间、消费场所、用户性别等不同的维度分析校园一卡通消费数据辅助学校有关部门决策。
有关Web挖掘和门禁刷卡记录的研究主要集中于高校数字化图书馆的相关研究当中。其中,大量对高校Web挖掘的研究集中于通过Web挖掘为读者提供个性化知识服务(欧阳烽,2008)(张沛露,2010)(赵静,2013)(程思祥,2013);而对图书馆刷卡记录的研究则主要集中于刷卡数据与学生学习行为、模式及学习成绩之间的关联分析(滕清秀,2007)(吴志强,2012)(周琳,2015)。
近些年来,随着在线教学的兴起,出现了一些对在线学习数据的挖掘和分析类的研究。Tonetti和Natale(2015)、Enright和Refinetti(2017)、Benjamin Smarr和Aaron Schirmer(2018)等利用学生登录教学资源管理平台的数据和学生成绩数据,分析学生的学习习惯、作息规律与学业成就之间的关系。
中国也有学者对在线教育平台数据进行研究,如张羽(2013)、许楠(2015)、王萍(2015)等通过分析Moodle、edX、MOOCs等平台的用户学习数据,发掘学习者的行为特征;张进良(2014)从在线学习数据分析角度研究教师的发展问题;孙曙辉(2015)从学习数据分析角度研究智慧课堂组织问题。
目前,虽然对高校数据的研究看似不少,但都是基于简单数据、简单模型和简单工具的浅层次分析,真正有价值、有实际意义的研究极少。比如,校园网各类硬件的登录日志分析,与教学过程及效果有关的综合数据分析等具有重要研究和决策参考价值的研究基本为空白。投入实际应用的研究成果少,且重合度高,应用价值低。总之,目前对于校园数据分析的研究还处于起步阶段。